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5. Gaussian Beam Propagation 
 
In this exercise, we simulate the propagation of Gaussian beams and the influence of their main 
parameters. 

1. Install the GaussianBeam software. 
a. Initiate an ideal Gaussian beam with a wavelength of 𝜆 = 600 nm (orange), a beam 

diameter of 𝐷 = 250 μm and a beam quality factor 𝑀ଶ = 1. 
b. We are given lenses with focal lengths 𝑓 = 100 mm, 50 mm, 20 mm, and 10 mm. Based 

on your prior knowledge, how should the waist diameter evolve as a function of these 
focal lengths? 

c. Check your assumptions using the software and conclude. 
2. Change the initial beam diameter to 𝐷 = 500 μm, what do you observe? Determine the waist 

diameters in this case for each of the lenses mentioned above. 
 
Notes. 

i. A beam diameter of 𝐷 = 250 μm corresponds to a beam waist of 𝑤଴ = 125 μm 
(𝐷 = 2 ⋅ 𝑤଴). 

ii. Place both the “Input beam” and “Lens” at the same position (e.g. 0) to be sure the beam at the 
position where it encounters the lens has the diameter inputted in the table. Else, the beam will 
start to diverge and have a diƯerent diameter when it encounters the lens. 

iii. The beam waist after the lens is indicated in the column “Waist (µm)” of the “Lens” line. 
 
Based on your knowledge in optical engineering, you can guess that a more focusing lens (focal length 
smaller) will generate a more focused laser beam (waist smaller). The results for questions 1 and 2 are 
summarized here: 
 

 𝒇 = 𝟏𝟎𝟎 𝐦𝐦 𝒇 = 𝟓𝟎 𝐦𝐦 𝒇 = 𝟐𝟎 𝐦𝐦 𝒇 = 𝟏𝟎 𝐦𝐦 
𝑫 = 𝟐𝟓𝟎 𝛍𝐦 𝑤 = 96.7 μm 𝑤 = 65.2 μm 𝑤 = 29.7 μm 𝑤 = 15.2 μm 
𝑫 = 𝟓𝟎𝟎 𝛍𝐦 𝑤 = 73.1 μm 𝑤 = 37.8 μm 𝑤 = 15.3 μm 𝑤 = 7.6 μm 

 
Most importantly, keep in mind that the beam waist after a lens, 𝑤, is dependent on both the focal length 
𝑓 (increasing with it) and the input beam diameter 𝐷 (decreasing against it). 
 

3. How does the beam waist compare to the numerical aperture of a given objective? 
 
The beam waist is actually inversely proportional to the Numerical Aperture (NA), equal to 𝑛 ∙ sin(𝜃) with 
𝑛 the refractive index of the propagation medium and 𝜃 the maximum acceptance half-angle. 

𝑁𝐴 = 𝑛 ∙ sin(𝜃) = 𝑛 ∙ sin ቎tanିଵ ቌ

𝐷
2
𝑓

ቍ቏ ≈ 𝑛
𝐷

2𝑓
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Illustration of the focusing of a beam through a lens. 

 
One can call the NA the “focusing power” of the optical system: the larger the NA, the better it can focus 
light (that is, the better the resolution). This behaviour is similar to the Abbe diƯraction limit law, where 
the minimum resolvable distance between two features is limited by: 

𝑑 =
𝜆

2 ∙ 𝑁𝐴
 

 
4. Now, set a beam diameter of 𝐷 = 250 μm and a lens with a focal length 𝑓 = 20 mm. Observe 

the evolution of the beam propagation as a function of the following wavelengths: 600 nm, 
300 nm (UV-B), and 9999 nm (LW-IR). What do you conclude? 

 
𝝀 = 𝟑𝟎𝟎 𝐧𝐦 𝝀 = 𝟔𝟎𝟎 𝐧𝐦 𝝀 = 𝟗𝟗𝟗𝟗 𝐧𝐦 
𝑤 = 15.2 μm 𝑤 = 29.7 μm 𝑤 = 121.4 μm 

 
These quantities are proportional one to each other. The beam waist (and focal spot position) directly 
depends on the wavelength. 

 

Beam waist and focal spot position for three diƯerent wavelengths: 
300 nm (blue), 600 nm (orange) and 9999 nm (red). 
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5. Keeping the same conditions as for Question 4, with a wavelength of 600 nm, initiate a real 

Gaussian beam (that is, non-ideal). What do you observe? 
Hint. Which parameter should you change to describe a realistic Gaussian beam? 

 
The output from real-life lasers is not truly Gaussian (although the output of a single mode fibre is a very 
close approximation). To accommodate this variance, the quality factor has been defined to describe 
the deviation of the laser beam from a theoretical Gaussian. For an ideal Gaussian, we have seen that 
𝑀ଶ = 1. For a real laser beam, 𝑀ଶ > 1. 

The quality factor of HeNe (helium neon) lasers is typically 𝑀ଶ < 1.1. For high energy multimode lasers, 
the 𝑀ଶ can be as high as 25 or 30. In all cases, the quality factor aƯects the characteristics of a laser 
beam and cannot be neglected in optical designs. 

Let us compare the ideal situation with a real-world situation where 𝑀ଶ = 1.5. We keep a beam diameter 
of 250 μm and 600 nm wavelength, and a lens with 𝑓 = 20 mm. 
 

𝑴𝟐 = 𝟏. 𝟎 𝑴𝟐 = 𝟏. 𝟓 
𝑤 = 29.7 μm 𝑤 = 43.0 μm 

 
The beam waist is roughly proportional to the quality factor, which is a dimensionless value representing 
the beam quality. Again, a perfectly Gaussian beam (single mode TEM00) has, by definition, 𝑀ଶ = 1. 

To summarize, 𝑀ଶ factor determines the beam’s quality in terms of focusability, or how well a divergent 
laser source can be collimated. The ISO Standard 11146 defines the 𝑀ଶ factor as: 

𝑀ଶ =
𝜋𝑤଴𝜃

𝜆
 

with 𝑤଴ the beam waist, 𝜃 the divergence angle of the laser, and 𝜆 the lasing wavelength. 

 

Illustration of the eƯect of M2 factor on beam quality for a close to perfect beam (left) 
and a beam with high M2 factor (right). 
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6. Material Removal Rate in Laser Processing 
 
We consider a pulsed laser. The pulses are emitted at a frequency 𝑓. This frequency is commonly called 
repetition rate. Furthermore, we assume that the laser at focus has a spot radius of 𝑤଴, and each single 
pulse carries an energy 𝐸௣. Finally, we assume that the ablation depth per pulse is 𝑧௔. 
 

1. How would you define the material removal rate in the case of an ablation process? Give an 
expression for this 𝑀𝑅𝑅. 
Note. In the jargon of laser processing, the material removal rate is referred to as ablation rate. 

 
The material removal rate is usually defined as “how much volume of material is removed by unit of 
time”. Its unit is typically mmଷ/min or mmଷ/s. 
Knowing the ablation depth per pulse 𝑧௔, we can deduce the volume ablated by one single pulse: 

𝑀𝑅𝑅௣௣ = 𝜋𝑤଴
ଶ𝑧௔ 

Knowing the pulse repetition rate 𝑓, we can write the 𝑀𝑅𝑅 as following: 

𝑀𝑅𝑅 = 𝑀𝑅𝑅௣௣𝑓 = 𝜋𝑤଴
ଶ𝑧௔𝑓 

 
2. How would you define the MRR energy eƯiciency (i.e., “how much volume of material is removed 

per spent unit of energy”)? Give an expression for this 𝑀𝑅𝑅ா . 
 
We can define the 𝑀𝑅𝑅ா  as “the material removal rate divided by the used optical power 𝑃 = 𝐸௣𝑓”, its 
unit being mmଷ/J: 

𝑀𝑅𝑅ா =
𝑀𝑅𝑅

𝐸௣𝑓
=

𝜋𝑤଴
ଶ𝑧௔

𝐸௣
 

 
Application. Let us consider the case of cutting a polymer (ABS) with a UV laser. We provide the 
following parameters: 𝑀𝑅𝑅ா = 0.067 mmଷ/J, 𝑓 = 30 kHz, scanning speed 𝑣 = 10 mm/s, average 
optical power 𝑃 = 20 mW, and 2𝑤଴ = 11 μm, the spot diameter. We assume that the spot diameter 
stays constant over the thickness of the considered material. 

3. Calculate the ablation rate per pulse and the ablation rate. 
 
Using the average power, we can calculate the pulse energy: 𝐸௣ = 𝑃/𝑓 ≅ 0.67 μJ. 
Then, using the 𝑀𝑅𝑅ா, we can get the volume ablated by one single pulse: 

𝑀𝑅𝑅௣௣ = 𝑀𝑅𝑅ா · 𝐸௣ ≅ 4.5 ⋅ 10ି଼ mmଷ 

The ablation rate is hence 𝑀𝑅𝑅 = 𝑀𝑅𝑅௣௣ · 𝑓 ≅ 1.4 ⋅ 10ିଷ mmଷ/s. 
 

4. How long would it take to cut a 𝑐 = 1 mm square out of a 𝑡 = 200 μm thick substrate? 
 
Knowing the ablation rate, we need to estimate the time required to ablate the volume corresponding to 
the contour of the square over the substrate’s thickness, with a cutting thickness of 11 μm (the waist). 
 
As a first assumption, we neglect the pulse-to-pulse eƯects of saturation and incubation. This is an 
oversimplification as these eƯects tend to become strong at high repetition rates (and/or slow scanning 
speed). Thermal accumulation might also occur, which typically disrupts the ablation process. 
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Under those simple assumptions, we can calculate the volume that needs to be ablated: 

𝑉 = 4 ⋅ 𝑐 ⋅ 𝑡 ⋅ 2𝑤଴ = 4 ⋅ 1 ⋅ 0.200 ⋅ 0.011 = 0.0088 mmଷ 

The time needed to remove this volume is therefore: 

𝑡 =
𝑉

𝑀𝑅𝑅
≅ 6.3 s 

With the scanning speed 𝑣, we deduce that the laser path length is about 

𝑙௣௔௧௛ = 𝑡 ⋅ 𝑣 = 65 mm 

Note that this is about 16 times the contour of the square, which means that the 𝑧 dimension of the laser 
spot is around 13 μm… These results are valid assuming that a 𝑧-axis platform is adjusting the height of 
the beam waist so that the beam diameter stays constant during the process. 
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7.  Glass Manufacturing with Femtosecond Lasers 
(by Antoine Duret) 

 
7.1. Femtosecond Laser Printing 
 

1. List the benefits and drawbacks of such a process in comparison to other laser-based 
manufacturing technologies.  

This process has several unique capabilities: 

 It relies on direct laser writing and hence does not require masks nor clean rooms. 
 It is a two-step process, avoiding any complex assemblies, bonding, and post-processing steps. 
 It allows quick device optimizations for faster market entry and rapid prototyping. 
 It is versatile and can be applied to a broad range of microtechnologies, including precision 

mechanisms, optical communications, microfluidic chips, biomedical devices, and packaging. 
 Complex 3D geometries can be printed, with multiple slopes on the same part, cavities, 

channels, excellent resolution (1 μm) and very high aspect ratio (> 1: 500). 

The main drawback is the processing time, which increases with the complexity of the part. It is the sum 
of the laser writing time and etching time (but several devices can be etched together in parallel). 

Another limitation is the choice of materials, restricted to glasses (and even not all of them). 
 

2. Glass appears as an ideal material because of its transparency at 1030 nm, the wavelength of 
the femtosecond laser. List other reasons making it very relevant for microengineering 
applications. 

 
Glass is isotropic, chemically stable, and biocompatible, it is a good electrical insulator, it oƯers 
excellent mechanical, optical and thermal properties and it has a high durability. 
 

3. What glass property may act as a troublemaker if the process is not well controlled? 
 
Glass is a brittle material. Even if it is flexible if suƯiciently thin, it can break very easily as it does not 
sustain any plastic deformation. This can cause many issues, including chipping during the etching due 
to residual constraints caused by the laser writing step. 
 

4. The femtosecond laser pulses induce a change of volume in the matter. What are the three 
consequences resulting from this volume change? Why are they important? 
Hint. Consider one mechanical consequence, one optical consequence and one process-
related consequence. 

  
The change of volume increases the stress, alters the refractive index, and increases the etching rate. 
Stress increase must be considered to avoid chipping or part failure during or after manufacturing. The 
change of refractive index must be considered when ordering the laser operations, so that the laser 
beam never passes again through a written area (to avoid light refraction / diƯusion and subsequent 
manufacturing issues). Finally, the etching rate increase in the written areas is the key to be able to 
obtain a part with the expected geometry after the etching. All the surfaces would etch at the same 
speed otherwise! 
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7.2. Case Study of a Glass Package 
 

5. Knowing that the laser beam comes from the bottom, explain how you would proceed to write 
the geometry in a glass slide of desired thickness. 

 
The only rule is simply to avoid rewriting through an already written area. 

(1) We can start by writing the closed contours of the part, always from top to bottom. This includes 
the external border of the part, the two traversing holes and the two small alignment holes.  

(2) We can then write the inner closed contour defining the pocket, from top to bottom, until the 
desired depth.  

(3) Finally, we need to write the full pocket plane, with a single line following a back-and-forth 
pattern. Remember that you have to write all the surfaces where you want to remove matter. 

  

 

Step (1) described in Question 5. 
 

 

Step (2) described in Question 5. 
 

 

Step (3) described in Question 5. 
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6. Knowing that the vertical pitch is 𝑝௩ = 15 μm, how many laser passes do you have along the full 

height of the part? 

𝑁௣௔௦௦௘௦ =
𝑡

𝑝௩
=

5.8

0.015
≅ 386 

 
7. Femtosecond lasers have very specific parameters. In our case, knowing that the laser has a 

repetition rate 𝑅𝑅 = 1000 kHz, a peak power 𝑃௣௘௔௞ = 1.53 MW and a pulse duration 𝑃𝐷 =

150 fs, compute the average power 𝑃௔௩  of the light source. 
 
The pulse energy is first given by 

𝑃𝐸 = 𝑃௣௘௔௞ ⋅ 𝑃𝐷 = 1.53 ⋅ 10଺ ⋅ 150 ⋅ 10ିଵ ≅ 230 nJ 

 
From this result, we can compute the average power: 

𝑃௔௩ = 𝑅𝑅 ⋅ 𝑃𝐸 = 1000 ⋅ 10ଷ ⋅ 230 ⋅ 10ିଽ ≅ 0.23 W 

 
We see that despite extremely high peak powers, the average power over time is very small. This is why 
there is no heat transfer in the matter in the non-cumulative regime, hence no change of state and very 
clean writing. This also explains why femtosecond lasers are used to perform surgeries directly into the 
human eye... Finally, we might be surprised by the very low electrical energy cost required to supply a 
femtosecond laser used in such conditions! 
 
 
7.3. Selectivity in Etching 
 

8. What is the minimum etching time 𝑡௘௧௖ ,௠௜௡ required for our package? 
 
First, identify and compute the critical etched length 𝑙௖  in the package. In our case, the critical length is 
the shortest distance that the acid solution has to cover to reach the middle of the pocket plane (that 
is, the longest distance to cover over the whole part). Assuming that the pocket is written with lines 
parallel to its short side: 

𝑙௖ = 2.5 +
14.8

2
= 9.9 mm 

The minimum etching time is then given by: 

𝑡௘௧௖௛,௠௜௡ =
𝑙௖

𝑤
=

9.9

0.350
≅ 28.3 h 

 
9. What is the maximum parasitic etching 𝑑௣ in that case?  

 
All the unwritten surfaces will also be etched of a quantity given by 

𝑑௣ = 𝑡௘௧௖௛,௠௜௡ ⋅ 𝑖 = 28.3 ⋅ 0.5 ≅ 14.2 μm 
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10. Detail two strategies to minimize this parasitic eƯect and reach dimensions closer to the 

expected ones. 
 
Strategy 1. We can add hatching lines over the pocket. They will increase the laser writing time but 
reduce the 𝑙௖  and hence the required etching time (and undesired etching). To help the etching solution 
reach the remote areas of the pocket, the hatching lines must be orthogonal to the lines defining the 
pocket plan itself. 
 
Let us fix a hatching distance equal to 400 𝜇𝑚. The new critical length, minimum etching time and 
parasitic etched distance are: 

𝑙௖ = 2.5 +
0.400

2
= 2.7 mm 

𝑡௘௧௖௛,௠௜௡ =
2.7

0.350
≅ 7.7 h 

𝑑௣ = 7.7 ⋅ 0.5 ≅ 3.9 μm 

This technique will also facilitate the detaching of the bulk material to remove to open the pocket. 
 

 
 

The hatching operation. Chronologically, this step shall be added between 
the writing of the edges of the pocket and the writing of the pocket plane. 

 
Strategy 2. In complement, we can take into account the unwanted etching in the toolpath design itself 
and write all the geometries with dimensions extended by this 𝑑௣. The part is written bigger than its 
correct dimensions to balance the parasitic etching. 
 

11. Evaluate the verticality of the traversing holes. 
 
We know that the part has a thickness 𝑡 = 5.8 mm. The etching solution comes from both sides of the 
holes, so the critical etched distance referred to such hole is 𝑙௖,௛௢௟௘ = 2.9 mm. In other words, the time 
interval between the etching of the external and middle heights of the holes is: 

𝑡௘௧௖௛,௛௢௟௘ =
𝑙௖,௛௢௟௘

𝑤
=

2.9

0.350
≅ 8.3 h 

 
During 8.3 h, the extremities of the hole are etched with an etch rate i while the rest is etched with the 
written etch rate 𝑤. At the end, the extremities of the holes are over-etched by a distance: 

𝑑௣,௛௢௟௘ = 𝑡௘௧௖௛,௛௢௟௘ ⋅ 𝑖 = 8.3 ⋅ 0.5 ≅ 4.2 μm 
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The slope of the inner surface of the holes is thus: 

𝛼 = 𝑎𝑡𝑎𝑛 ቆ
𝑑௣,௛௢௟௘

𝑙௖,௛௢௟௘
 ቇ = 𝑎𝑡𝑎𝑛 ൬

4.2

2900
൰ ≅ 0.083° 

 
12. Empirical data show that the etching time typically improves the failure strength, allowing some 

parts to withstand stresses more than 2 GPa above the theoretical yield strength of glass. Can 
you explain why? 

 
This is another interesting eƯect occurring during etching: the removal of surface defects and broken 
bonds. These elements create regions with stress concentration which are conducive to cracks 
nucleation and chipping. This is why improvements in the mechanical properties of etched glass parts 
were observed as a function of the etching time. 
 
 
7.4. Welding the Package 
 

13. (Advanced) Think about what could go wrong with the package studied in this exercise, knowing 
that we would like to flip another identical part on top of the first one and laser-weld them 
together to form a full package, as shown in Figure 9. Think about the stress concentrations and 
their implications. Once you have identified at least two potential issues, propose some ideas 
to solve them. 

 
Because of the substantial volume changes induced in the matter by the pocket writing (it has very large 
dimensions!), the full part may slightly bend during the laser step and may not detach correctly at the 
end of the etching step. A solution to this problem would be to increase the etching time as long as 
necessary. This can always be done, provided that the tolerances are not critical or that the design is 
compensated accordingly. 

However, to be able to perform the welding properly, the surfaces to weld need to be perfectly flat to 
guarantee excellent contact between them. Several options are possible to minimize the bending of the 
part due to internal constraints: decrease the size of the pocket (if possible), reduce the pulse energy 
(but the writing step might become extremely long), or decrease the pitch at the bottom of the part to 
kind of counterbalance the internal constraints. 

Reducing the internal constraints is also important to avoid any chipping along the pocket borders. 
Sharp edges and angles are perfect spots for stress concentration. Chamfering or filleting these regions 
might be a good solution. 

Finally, a good practice when manufacturing glass parts with lasers is always to start the operations a 
few tens of microns above the actual surface of the part and finish a few tens of microns below the 
actual bottom of the part. This allows us to be sure that the part will be written over the full height or 
thickness of the substrate, despite eventual intrinsic or appearing nonplanarities. 
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8. Cutting Strategy in Blanking  
 

1. Qualitative Assessment. Intuitively, which of the two strategies will yield the lowest amount of 
scrap metal? What are the limiting factors determining the minimum distance between holes? 

 
Intuitively, it is not diƯicult to guess that the second strategy with multiple rows of circles cut out of a 
single strip will be more material-saving. The grey surface corresponding to scrap material can be 
minimized compared to the first strategy. 

The distance between holes cannot be too small, or the blanking process will not be performed properly 
anymore. If the cutting force exceeds the shear force that the beam of length the minimum distance 
between two holes can sustain, the strip will fail. Therefore, this distance varies as a function of the 
material being cut (in terms of its mechanical properties, but also of its thickness). 
 

2. Quantitative Assessment. For both cases, estimate the percent scrap in producing round blanks 
if the clearance between blanks is one tenth of the radius of the blank (i.e., 10% of the disk radius 
needs to be preserved during cutting). Conclude. 
Hint. Draw a repeating unit cell. 

 
Single row solution. A repeating unit cell for the single row blanking is illustrated 
here. The area of the unit cell is 

𝐴௨௖ = (2.2𝑅)(2.1𝑅) = 4.62𝑅ଶ 

The area of the circle is 𝐴௛௢௟௘ = 3.14𝑅ଶ. 
Therefore, the scrap is: 

𝑠𝑐𝑟𝑎𝑝 =  
4.62𝑅ଶ − 3.14𝑅ଶ

4.62𝑅ଶ
⋅ 100 = 32% 

 
Multiple row solution. A repeating unit cell for the multiple row blanking is illustrated 
here. We know that the distance between the edge of a hole and the metal strip border 
is 0.1𝑅. We also know that the distance between the centers of two holes is 2.1𝑅, 
meaning that the width of the cell is 𝑤 = 2.1𝑅. We can find the height of the cell 
simply using Pythagoras’ theorem: 

ℎ = 0.1𝑅 + 𝑅 + ቌඨ𝑤ଶ − ቀ
𝑤

2
ቁ

ଶ

ቍ + 𝑅 + 0.1𝑅 = 2.2𝑅 + ℎ′ 

with ℎ’ = 𝑤/2 being the distance between the first and second row of holes (at the level of their centers). 

Using the same approach than before, it can be shown that scrap material in the case of the multiple 
row blanking is about 26%. 
 

3. Calculate the blanking force for punching a disk of 5 mm in diameter out of a 0.5 mm-thick strip 
of spring steel (𝑠௅ = 400 MPa, 𝑡௅ » 0.5𝑠௅). 

 
The blanking force is 𝐹௕ = 𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 ×  𝑝𝑙𝑎𝑡𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ×  𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ: 

𝐹௕ = (𝜋 ⋅ 5 ⋅ 10ିଷ ) ⋅ 0.5 ⋅ 10ିଷ ⋅ (0.5 ⋅ 400 ⋅ 10଺) = 1570 N 
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9. Folding 
 
9.1. Preliminary Work 
 

1. Demonstrate the formula shown in class that expresses the strain in a beam curved in pure 
bending. Assume that the curvature remains big compared to the beam thickness, so that the 
neutral line is passing exactly through the middle of the beam. 
Hint. Make a proper drawing and use the basic definition of the engineering strain. 

 
The engineering strain is defined as: 

𝜀 =
Δ𝐿

𝐿଴
 

Let us apply here to the arc length 𝑠 as shown in the figure. This arc is defined by the angle 𝑞. In this 
loading case, the strain remains zero along the neutral axis. Let us now call 𝑠଴, the arc length defined on 
the neutral line for the angle 𝑞 as well. By definition, we have: 

𝑠଴ = 𝜌𝜃 

The radius of curvature at a given position 𝑧 in the beam is given by: 

𝜌(𝑧) = 𝜌 + 𝑧 

𝑧 being the distance from the neutral plane (see the figure). 

Therefore, the length of the arc corresponding to the angle 𝑞 at a position 𝑧 within the beam writes: 

𝑠(𝑧) = 𝜌(𝑧)𝜃 = (𝜌 + 𝑧)𝜃 

The arc length 𝑠(𝑧) can be seen as the ‘deformed’ arc 𝑠଴ at position 𝑧. Therefore, using the strain 
definition: 

𝜀(𝑧) =
𝑠(𝑧) − 𝑠଴

𝑠଴
=

𝑧

𝜌
 

with 0 ≤ 𝑧 ≤
௧

ଶ
. 

The strain is maximum at the inner and outer surface of the beam. 
 
 

9.2. Plastic Deformation7 
 

2. We bend the beam. Knowing the plastic stress limit 𝜎௬ for a given material, calculate the radius 
of curvature – we will call it 𝑅௣ – for which plasticity in the beam will start to appear. 

 
Plasticity occurs when the stress in the beam exceeds the elastic limit of the material. Since the 
maximal stress when bending is present at the outer surfaces, the condition could be expressed as: 

𝜎 ൬𝑧 =
𝑡

2
൰ = 𝐸

𝑡

2𝜌
> 𝜎௬ 

In other words, this condition is found when the bending radius inducing plastic deformation is: 

𝑅௣ = 𝐸
𝑡

2𝜎௬
 

 
7 Adapted from Beer, Johnston, DeWolf, Mechanics of materials, 3rd Ed., The McGraw-Hill Companies. 
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3. Describe how the stress state evolves in the material as the beam is bent beyond 𝑅௣. What 

happens during unloading? Use drawings to illustrate the evolution of the stress state and 
assume that the deformation remains elastoplastic. 

 
As the beam is bent beyond 𝑅௣, the material passes from elastic to elastoplastic deformation. Plastic 
zones develop around an elastic core. If the moment is increased further, the elastic core goes to zero, 
corresponding to a fully plastic deformation. 

              
 
Plastic zones develop in a part made of an elastoplastic material 
if the bending moment is large enough. 

Since the linear relation between normal stress and strain 
applies at all points during the unloading phase, unloading may 
be handled by assuming the member to be fully elastic. Tracing a 
stress-strain graph, we see that residual stresses appear. 

They are obtained by applying the principle of superposition to 
combine the stresses due to loading with a moment 𝑀 
(elastoplastic deformation) and unloading with a moment −𝑀 
(elastic deformation). 

In general, in case of plastic deformation, the final value of stress 
at a point will not be zero. 

Let us summarize: 

 
 

Application. A uniform rectangular beam is subjected to a bending moment 𝑀 = 36.8 kN ⋅ m. It is made 
of an elastoplastic material with 𝜎௬ = 240 MPa and 𝐸 = 200 GPa. 
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4. Determine the thickness of the elastic core 𝑡௒ and the radius of curvature of the neutral surface, 

knowing that the applied moment and maximum moment for elastic bending are linked as: 

𝑀 =
3

2
𝑀௒ ቆ1 −

1

3

𝑦௒
ଶ

𝑐ଶቇ 

 
Using the provided equation and rearranging the terms, we obtain: 

𝑦௒ = ඨ3𝑐ଶ ൬1 −
2

3

𝑀

𝑀௒
൰ 

The maximum elastic moment is given by: 

𝑀௒ = 𝐼
𝜎௒

𝑐
=

𝑏(2𝑐)ଷ

12

𝜎௒

𝑐
= 28.8 kN 

So the half thickness of the elastic core is 

𝑦௒ = ඨ3 ⋅ 60ଶ ⋅ ൬1 −
2

3
⋅

36.8

28.8
൰ = 40 mm 

and 𝑡௒ = 2𝑦௒ = 80 mm. The radius of curvature is given by: 

𝜀௒ =
𝜎௒

𝐸
= 1.2 ⋅ 10ିଷ, 𝜀௒ =

𝑦௒

𝜌
⇒ 𝜌 =

40 ⋅ 10ିଷ

1.2 ⋅ 10ିଷ
= 33.3 m 

 
5. After unloading the beam (loading reduced back to zero), determine the distribution of residual 

stresses (draw the correspond graphs) and the radius of curvature of the neutral surface (i.e., at 
the edge of the elastic core). 

 
Let us consider each step one by one (remember what we discussed in Question 3): 

 Loading. For 𝑀 = 36.8 kN ⋅ m, 𝑦௒ = 40 mm and  𝜎௫(𝑦௒) = 𝜎௬ = 240 MPa 

 Unloading. For 𝑀 = −36.8 kN ⋅ m, 𝜎௠
ᇱ =

ெ௖

ூ
= 306.7 MPa < 2𝜎௒ and 𝜎௫

ᇱ (𝑦௒) = 204.5 MPa 
 Final state: principle of superposition. Finally, for 𝑀 = 0, we have 

𝜀௫,௘௟. =
𝜎௫,௠௜௡

𝐸
=

𝜎௫
ᇱ (𝑦௒) − 𝜎௫(𝑦௒)

𝐸
=

−35.5 ⋅ 10଺

200 ⋅ 10ଽ
= −177.5 ⋅ 10ି଺ 

𝜀௫,௣௟. =
𝜎௫,௠௔௫

𝐸
=

𝜎௠
ᇱ − 𝜎௫(𝑦௒)

𝐸
=

66.7 ⋅ 10଺

200 ⋅ 10ଽ
= 333.5 ⋅ 10ି଺ 

 

The graphs representing the situation can be drawn as follows: 
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We thus obtain at the edge of the elastic core: 

𝜌 = −
𝑦௒

𝜀௫,௘௟.
=

40 ⋅ 10ିଷ

177.5 ⋅ 10ି଺
= 225 m 

 
 
9.3. Hinge Forming 
 

6. Calculate the initial bend radius 𝑅௜. 

As the die has a diameter of ∅ௗ௜௘ = 20.0 mm and the sheet thickness is 𝑡 = 1.00 mm, the initial bend 
radius is: 

𝑅௜ =
20.0

2
− 1.00 = 9.00 mm 

 
7. Considering the spring back eƯect, what will be the outside diameter ∅௙ of the hinge once 

released from the die?  
Hint. The following formula expresses the final bent radius as a function of the initial bend radius: 

𝑅௜

𝑅௙
= 4 ൤

𝑅௜𝜎௬

𝐸𝑡
൨

ଷ

− 3 ൤
𝑅௜𝜎௬

𝐸𝑡
൨ + 1 

 
Let us start by evaluating the common term: 

𝑅௜𝜎௬

𝐸𝑡
=

9.00 ⋅ 90 ⋅ 10଺

1.00 ⋅ 70 ⋅ 10ଽ
≅ 0.0116 

We thus obtain for the equation: 

𝑅௜

𝑅௙
= 4 ⋅ 0.0116ଷ − 3 ⋅ 0.0116 + 1 ≅ 0.965 ⇒ 𝑅௙ =

9.00

0.965
≅ 9.33 mm 

the final bend radius. From this result, we compute the final outside diameter: 

∅௙ = 2൫𝑅௙ + 𝑡൯ = 20.66 mm 

 

8. What is the amount of permanent strain in the final shape? Assume that the bending radius is 
still enough large compared to the beam thickness so that the neutral line is still in the middle. 

 
In the first part of this exercise, we have seen that 𝜀(𝑧) = 𝑧/𝜌. The maximum amount of permanent 
strain can hence be estimated by taking 𝜌 = ∅௙/2: 

𝜀௣ =
𝑡

∅௙

2

=
2 ⋅ 1.00

20.66
≅ 0.0968 

so about 9.68% of maximum plastic deformation. 
 

  


